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Let I(k, "', M) be the class of all subsets A of Rk whose boundaries are given by
functions from the sphere Sk-l into Rk with derivatives of order < "', all bounded
by M. (The precise definition, for all '" > 0, involves Holder conditions.) Let
N.(€) be the minimum number of sets required to approximate every set in
I(k, Ci, M) within € for the metric d, which is the Hausdorff metric h or the Lebesgue
measure of the symmetric difference, dA . It is shown that up to factors of lower
order of growth, N.(€) can be approximated by exp(c r

) as € to, where r =
(k - I)!", if d = h or if d = dA and", :> 1. For d ,~ dA and (k - 1)!k < 'x < 1,
r < (k - l)!(k", - k + 1). The proof uses results of A. N. Kolmogorov and
V. N. Tikhomirov [4].

1. INTRODUCTION

We consider classes of subsets A of Rk whose boundaries aA are defined
by maps of the sphere Sk-l into Rk with bounded derivatives of order ~IX

for some IX < 00. Using Holder conditions, such classes are defined for all
IX > °(not necessarily integral). Given k, IX, and a uniform bound M on
derivatives of orders ~IX (for more detailed definitions see Section 2 below),
we have a class I(k, IX, M) of subsets of Rk. We ask: given E > 0, how many
sets are needed to form an E-dense set in I(k, IX, M), i.e., to approximate
each set within E, for the Hausdorff metric h or for the metric dA which is
the Lebesgue measure of the symmetric difference. We find that as E ~ 0,
the required number N(E), of sets, is approximated by exp(E- r ) for a suitable
exponent r depending on k, IX, M and the choice of metric h or dA ; we write
r = rh or r = rA, respectively. The approximation is proved only in the
sense that given t < r < s, expect) < N(E) < exp(cS

) for E small enough.
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Thus N(E) is asymptotic to exp(c r ) with suitable factors of lower order of
growth inserted, but here we do not find these factors precisely.

Theorem 3.1 below relates I' to the given k and eX. This result extends
previously known theorems on metric entropy of classes of functions
(Kolmogorov-Tikhomirov [4. Theorem XV]: Clements [2, Theorem 3]:
Lorentz [6, Theorem 10D. The main difficulty in the extension results from
the fact that boundaries of sets in I(k, (Y, M) are not restricted except for
differentiability and may intersect themselves in complicated ways. For
example. there is a set in 1(2, 17, I) with infinitely many components. We
have

r!l(l(k, Ci, M)) = (k - I )/lX:

r.,(l(k, (Y, M)) = (k - l)jCi if (Y I'

r,M(k, ex, M)) < (k - 1)/(kCi - k + 1) if (k -- l)/k < ,cy I,

where I conjecture that the last inequality for rA is also an equality.
The exponent (k - 1)/ Ci for classes of functions goes back to Kolmogorov

and Tikhomirov [4]. Relations between sets and boundary functions are
developed in the preliminary Section 2. The boundary functions on spheres
need not be one-to-one.

In Section 4 we consider the class C( U) of all convex closed subsets of any
fixed bounded open set U C RI.. We find

r!l(C(U)) = rA(C(U)) ~ •• (Ij2)(k - I).

Thus convex sets behave like sets with exactly twice differentiable boundaries,
as is perhaps not surprising. (On Rl, a convex function f has a second
derivative!" which is a positive Radon measure: even whenf" is a function,
it need not satisfy any Holder condition.) The proof in Section 4, however,
uses convexity rather than second derivatives per se.

While the results of this paper were found with probabilistic applications
in view [3, Theorems 4.2 and 4.3], it seemed appropriate to give them a
separate presentation.

2. PRELIMINARIES: BOUNDARIES

Let (5, d) be any metric space. Given E > 0, let N(S, E) be the smallest
number of sets of diameter <2E which cover S. The exponent of entropy
of 5 is defined by

1'(5) riS) =:= lim sup[log log N(S, E)]/i log E j.
dO

(If 1'(5) < 00, (5, d) must be totally bounded.)
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For any two subsets A, B of S, we have the Hausdorff distance !leA, B)
defined as follows:

!l1(A, B) = sup inf d(x, y),
xEA YEB

!leA, B) = max[h1(A, B), !l1(B, A)].

For closed sets, h is a metric. A set A C S is called E-dense iff !leA, S) ~ E.

For measurable subsets of a measure space (S, j-t) modulo null sets, there
is a metric d" defined by d,,(A, B) = j-t(A D B), where A D B is the symmetric
difference (A "-' B) U (B "-' A).

In the following, A. denotes Lebesgue measure. Exponents of entropy for
dA will be written rA •

Now we define spaces of functions on spheres "with bounded derivatives
of orders ~ex" for any ex > O. Let f3 be the greatest integer <ex and
y = C~ - (3 > O. For any open set U C Ric, let F(U, ex) be the set of all real
functions Ion U such that:

(a) the partial derivatives DPI = olPIf lox!'! ... OX;;" exist for iP I ==
PI + ... + Pk ~ (3;

(b) illll~ < w where

illil~ == sup{1 DPj(x) - DPj(y)I!1 x - y [y + IDqj(x)i:

I q I ~ IP i = (3, x =Ie y E U, X E U}.

Let Sk-l be the unit sphere in Rk:

We can cover SI'-1 by finitely many coordinate patches V j so that there are
Cre isomorphisms Wj : U -+ V j where U is the open ball {y: I y I < I} C Rk-l.
We can assume that Wj is actually a Coo isomorphism from a neighborhood
W of the closure of U into Sk-l. Then each partial derivative of Wj is uni­
formly bounded and the vectors oWj !oXi for i = I, ... , k - I are linearly
independent on W.

We define F(Vj , ex) as the set of all real-valued functions j on Vj such that
1 0 @j E F(U, ex). Let F(Sk-\ ex) be the set of all real-valued functions I on
Sk-l such that the restriction of I to V j is in F(Vj , ex) for each j. Then let
illli~ = SUPj 111 0 Wj II~ . This norm II . il~ depends on the choice of Vj and @j

but is topologically equivalent to the norms defined by other allowed choices
of Vj and Wj •

Taking the k-fold Cartesian product of copies of F(Sk-\ ex), we obtain
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a Banach space (FUo)(S',-l. (x). I • i,,) of functions from SI.-] into R\ where
11(f~ ... .,/;.)',= maxi fi! 0 • Now for M 0, let

G(k,x, M) {fE pl,I(SI, ], (x):,:f MJ.

Here we recall a basic definition from algebraic topology. Let f and g be
two maps from a topological space S into another space T. Then f and g
are called homotopic iff there is a continuous F from [0, I] S into T such
that F(O. .) f and F(l, .) g. F is called a homotopy off and g.

Next we shall define an "interior" IU) for each f E G(k, ex, M), so that,
e.g., iffis the identity on S'-I, IU) is the usual open unit ball. The following
definition was kindly suggested to me by J. Munkres.

DEFINITIO;\. For any continuous map f of a topological space 5 into
another space T, let IU) be the set of all x E T,,-, rangeU) such that in
T,~ {x},fis not homotopic to any constant map of5 into a point t E T'"'- {x}.

The proof of the following fact was also told me by J. Munkres.

LEMMA 2.1. Suppose Fis a homotopy offandg. Then IU) I(g) C range F.

Proo[: Suppose x E IU) ~ I( g). If x if' range(F), then f and g are homo-
topic in T,~ {x}. Clearly homotopy is transitive. Since g is homotopic
to a constant map in T'"'- {x}, so is f, a contradiction. The proof is
complete.

Iff is the identity map of 5" 1 into Rio, then IU) is the usual open unit
ball by well-known theorems of algebraic topology. Also, if f and g are
homotopic in R' "-' {O}, then 0 E I( g). Thus the above definition seems broad
enough to cover cases of interest.

Let I(k, ex, M) UU):fE G(k. ex, M)}.

3. THE EXPONENTS OF ENTROPY OF I(k, ex, M)

In the following, I conjecture that equality holds in (3.4). It seems that
a proof might require construction of some rather pathological sets.

THEOREM 3.1. Let 0 < ex < 00 and 0 < M < 00. Then

r,,(I(k, ex, M)) = (k - 1)/ex; (3.2)

If ex 1, rlI(k, ex, M)) = (k - 1)/ex; (3.3)

If (k - l)/k < ex 1, rA(l(k, ex, M)) ::s:; (k - 1)/(kex - k + I). (3.4)
Tf 0 < ex < 1, r,,(I(k, ex, M)) (k ~ 1)/ex.

Proof Let F(U, ex, y) ,= {fE F(U, ex): l!nQ ::s:; y}, using the definitions
in Section 2. Kolmogorov and Tikhomirov [4, Sect. 5, Theorems XIII-XV]
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have shown that for any bounded open U C Rk and 0 < , < 00,

rsF(U, ex, n = (k - l)jex where s is the supremum metric, s(f, g) =
sup{1 f(x) - g(x)I}. By definition of G(k, ex, M) it follows that rsG(k, ex, M) ~
(k - l)jex, proving rh(I(k, ex, M)) ~ (k - l)jex.

Now suppose I, g E G(k, ex, M) and s(f, g) ~ E, where E > O. Let
F(t, x) == (1 - t)f(x) + tg(x) for 0 ~ t ~ 1, x E S"-l. By Lemma 2.1,
dil(I(f), leg)) ~ .\.(range F).

If ex ~ 1, the maps in G(k, ex, M) are uniformly Lipschitzian. Thus
.\.(range F) = D(E) as E ~ 0, uniformly for f E G(k, ex, M). Hence
ril(I(k, ex, M)) ~ (k - I)jex.

Next let (k - I)jk < ex ~ 1. There is a K < 00 such that for 0 < °~ I,
there is a set £6 C Sk-1 such that for all x E Sk-I, I x - y I ~ ol/a for some
x E £6 , where £6 has at most Ko(l-k) /a elements. Then for any f E G(k, ex, M)
and Z E rangefthere is an x E £6 with If(x) - Z I ~ No for some N > M.

Let Ck be the volume of the unit ball in Rk. Given E > 0 let

Then .\.{x: :3y: If(y) - x I < 3No} ~ 4kNkKckO(ka-k+1)/a = E if °~ 1, as
is true for E small enough. To obtain a 3No-dense set in G(k, ex, M) it suffices
to approximate functions within No at each point of £6' Hence for E small,

N(I(k, ex, M), E, dil ) ~ exp{Kon-k)/a log[(2k + IYjok]}

~ exp{CI,En- k)/(ka-kH) I log E I}

for some constant Ck , so (3.4) follows.
To prove ~ and hence equality in (3.2) and (3.3) we use the following

fact, due to G. F. Clements [2, Theorem 3]. The proof here is different and
seems simpler.

LEMMA 3.5 (Clements). Let V be a bounded open set in Rk-I, k ~ 2,
ex > 0, and 0 < y < 00. Then r1(F(V, ex, y)) ~ (k - I)jex where r1 is the
exponent of entropy for the P metric d1(f, g) = Iv if - g I d.\..

Proof We can assume Visthe open cube {x: °< IXj I < I,) = I, ...,k-l}.
Letfbe a positive Coo function with support in V. Let Ilflla = N < 00. For
Q ~ I and t E R"-l let g(x) = f(Qx + t). Then for some Z < 00,

II g Iia ~ ZQa for all Q ~ 1.
For each positive integer Q there exist Q"-l such functions gj with disjoint

support, ) = I, ... , Qk-1. For each set A C {I, ... , Qk-1}, let gA = LjeA gj .
We shall show that there are many such sets A, different in many places.
This type of result seems to be known, but the following proof seems short
enough to include, and I know no explicit references for the result.
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for x E U,

LEMMA 3.6. For any positive integer n and any set B with n elements,
there is a collection of sets Ei .~ E(i) e B, i = 1,... , m, such that m en /8

and such that for i cF j, E i L E j has at least n/5 elements.

Proof Given any set E e B, the number of sets Fe A such that E F
has at most nj5 elements is 2nB(n/5, n, 1/2) where B(r, n,p) is the probability
of at most r successes in n independent trials with probability p of success in
each trial. According to Kolmogorov's exponential bound [5, p. 254],

B(n/5, n, 1/2) ,.:;: exp( -.126n) < exp(-nj8).

Thus we can inductively choose the sets Ei with m :;c; en /8 , proving Lemma 3.6.
Now the functions hA == ygAjQq all belong to F(V, (Y, y). Let

K = JIf I d>" > 0. Then for i cF j,

f I hEw - hE(j) I d>" ;:?o Qk-lYK/5ZQJ.:-l+~ = YK/5ZQ~.

Let E = YK/5ZQa. Then Q is proportional to Cl/~. Letting Q ---+ 00 and
applying Lemma 3.6 yields, for some constant !3 > 0,

N(F(V, (Y, y), E) ;:?o exp{!3E(l-J.:l/a}.

Thus Lemma 3.5 is proved.
There is a one-to-one Cro map G = (G1 , ... , Gk ) of Sk-l into Rk with a flat

face. Here "flat face" means there is an open set U e Sk-l such that
G1(U) = {O}, and for some 0> °and all t such that! t I < 0 and x E U,
G(x) + (t, 0, ... , 0) E leG) iff t > 0. Let H = (Gz ,... , Gk ). Then H(U) is an
open set ve Rio-I. For some M o < 00, G E G(k, (Y, M o). Given any M > 0,
we can replace G by a small multiple of itself and assume M o < M/2. We
can also assume V ~= KC where K > °and C is the open unit cube in Rk-l.
Then for some small enough ~ > 0, with ~ < 0, all the following functions
fJJA E G(k, (Y, M):

fJJA(X) = G(x) for x rj U

= G(x) + (~hA(H(x)jK), 0, ... ,0)

where hA is as in the proof of Lemma 3.5, with y ,.:;: min (1, M o).
For any sets A and Be {I, ... , Qk-l},

for Q large enough. Thus by Lemma 3.5 and its proof, we have equality
in (3.2) and (3.3) for all M > °and Theorem 3.1 is proved.
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4. CONVEX SETS
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Let C(U) denote the class of all convex closed subsets of U. It turns out
that the exponent of entropy of CCU), for U bounded, is (lj2)(k - 1)
although second derivatives of boundaries of polyhedra in C(U) are only
measures, not functions.

THEOREM 4.1. Let U be a bounded open set in R k. Then ric(U» =
rh(CCU» = (lj2)(k - 1).

Proof We choose a fixed point ~ E U. Let s = h(U, {n). We have for
any C, D E C(U) by [1, p. 41, 5]:

diC, D) ~ 2Ck[- Sk -+ (s -+ h(C, D»k] ~ Nh(C, D) (4.2)

where N depends on k and s but not on C, D. Thus to prove r(C(U» ~

(lj2)(k - 1) we need only consider the Hausdorff metric.

LEMMA 4.3. Suppose given vectors x, y, u, v in Rk such that (x - y, u) ;? 0
and (x - y, v) ~ O. Then

I x -+ u - y - v I ;? max(1 x - y I, I u - v I).

Proof

1 x -+ u - y - V 1
2 = I x - Y 1

2 -+ I u - V 1
2 -+ 2(x - y, u - v)

;? I x - Y 1
2 -+ I u - V 1

2
• Q.E.D.

A convex set C will be called analytic iff there is an entire analytic function
f such that C = {x E Rk:f(x) ~ I}, and the gradient off is nonzero on the
boundary ac. It is known that analytic convex sets are h-dense in the class
of all bounded convex sets [1, pp. 36-37]. If C is analytic and p E ac, let
rp(p) 0= gradf(p)jl gradf(p)j. Then rp is a continuous 1-1 map of ac onto
Sk-I. Let e(p, q) be the (smallest nonnegative) angle between rp(p) and rp(q).
Then 0 ~ e(p, q) ~ 71'. Let d(p, q) = 1 p - q I.

LEMMA 4.4. Given a bounded open U C Ric, there is an M < 00 such that
whenever 0 < 8 < 1, and C is any analytic convex subset of U, there is a set
A C ac with card(A) ~ M81 -

k such that A is 8-dense in ac for d -+ e.

Proof Let B be a fixed ball such that x -+ y E B whenever x E U and
I y I ~; 1. Then there is a constant S < 00 such that whenever 0 < E < I
there is an E-dense set BE C aB with card(BE) ~ SEI - k •
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Let C be convex and analytic, C C U. Then for every p E eB, there is a
unique nearest point n(p) E ac, with \ p -- n(p)1 1. The function nO
maps aB 1-1 onto ac. Suppose q E aB and l p - q ! < E. Let u = p - n(p),
v = q - n(q). Then we can apply Lemma 4.3 with x = n(p) and y = n(q)
to conclude \ n(p) - n(q)1 < Eand i u -- v < E. Let &be the angle between
u and v, so that e(n(p), n(q)) .~ &. Let Ul c= ull u I, VI ~= vii v I. Since I u '[ 1
and I v I 1, we have I u1 -- VI I < E. Also U I -- VI I .•~ 2 sin(&12). We
know &~ 7T sin(&12) for 0 & 7T by concavity. Thus e(n(p), n(q))
7TE/2 < 2E. Hence we can let M = 2kS, A= {n(p): p E B f }, proving Lemma 4.4.

LEMMA 4.5. Let C be an analytic convex set and 0 < 8 ~ 7T/4. Let A
be a 8-dense set in aCfor d + e. Let CA be the intersection of all half-spaces
which include C and are bounded by hyperplanes supporting C (tangent to aC)
at points of A. Then h(C, CA ) ~ 282 •

Proof Clearly CA :J C. Conversely let x E ac and choose yEA with
(d + e)(x, y) ~ 8. Let T", be the tangent hyperplane to ac at x. Let u be the
unit outward normal vector to ac and T", at x. Then x + yu E Ty for some
y > O. To maximize y, we may assume YET", (this particular argument
does not use analyticity). Now y ~ 8 tan 8 ~ 282 since tan &~ 2& for
o~ &~ 7T14. For every Z E CA there is a nearest point x E C, and
I Z - x i ~ 282

. Q.E.D.

Proof of Theorem 4.1. First we prove rh(C(U)) ~ (I/2)(k - 1). We can
assume U is a cube. Let t be the diameter of U. We may assume t ;~ 2.
There is an N < CD such that N?: I and whenever 0 < E ~ 7T14 there is
an E/2-dense set U. C B with card( Uf ) ~ Nc" (where B is a fixed large
ball :J U as in Lemma 4.4), and such that there is a tan-1 ( E/3t)-dense set
V. C Sk-l for the angular metric e with card(V,) ~ NE1- k •

Let W. be the set of all convex polyhedra PC U formed by intersections
of at most ME(1-k)/2 half-spaces H; (here M is as in Lemma 4.4) such that
each hyperplane aH; contains a point of Uf and is orthogonal to a vector v
in V., and v is directed outward from H; . Then

Hence

lim sup(log log card W.)/IIog € 1 ~ (Ij2)(k - 1).
dO

Now we show that W. is 12E-dense in qU) for h. To approximate a set
C E C(U), we may assume C is analytic. We take the set A C ac provided
by Lemma 4.4 for 8 = E1 / 2• At each x E A let T", be the tangent hyperplane
to ac. Let v", be the unit outward normal vector at x. Choose p", E U. with
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IPx -- X - EDx I ~ Ej2. Let Jx be a hyperplane passing through Px , orthogo­
nal to a vector in V., and forming an angle with Tx less than tan-I (Ej3t).
Let H x be the half-space on the side of Tx containing x. Then Hx~ C since
h({p.}, C) ;:?: Ej2 and (t + E(2)(Ej3t) ~ Ej2. Let C. = nXEA H x ~ C.

Now take any y E ac and Dy as above. Take x E A such that
(d + e)(x, y) < EI / 2 • Then I y - Px I < 3EI / 2 while Ty and Tx form an angle
less than 2EI / 2• We have x E C and y E H x . As in the proof of Lemma 4.5,
it follows that y + yV y 1: C. for y ;:?: 12E, so that h(C, C.) ~ 12E. Since
C. E W., we have proved r(CCU)) ~ (lj2)(k - 1).

For the converse inequality, by (4.2) it suffices to consider the metric d", .
There is a c > °such that whenever °< E < 1, there is a set A. C Sk-l

with card(A.) ;:?: CE1
-

k such that I x - y i ;:?: 4E for any distinct x and y in A•.
For each x E A., let Cx be the solid spherical cap cut from the unit ball
BI = {y: I y I ~ I} by the hyperplane orthogonal to x and passing through
(1 - E2(2)x. For some constant CXk > 0, "-(Cx) ;:?: CXkEk+l.

The caps Cx are disjoint. For an arbitrary set E CA. , let

Each DE is convex. We have h(DE , DF) = E2j2 for E =1= F so the proof is
easily completed for h. For d", we apply Lemma 3.6; taking the sets E i = E(i)
for A. , we have

for some constant 13k > 0. Letting () = f3kE2j3 we have

for some constant YI, > 0. Letting () ,} 0, Theorem 4.1 is proved.
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